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Scientific and Technical Objectives 
The overall long-term objective of these studies was to develop a chassis microbe for high-rate 
microbial electrosynthesis, significantly improving the electrical contacts with cathodes and 
long-range electron transport through cathode biofilms. The research aims were to 1) identify the 
“bioelectrical plugs” for establishing direct cell-electrode electrical contacts for electron transfer 
into cells in a potential gram-positive (Clostridium ljungdahlii) and gram-negative (Geobacter 
sulfurreducens) chassis for electrosynthesis; 2) determine the “biocircuitry” required to establish 
long-range electron transport through cathode biofilms; and 3) combine discoveries from Aims 
#1 and #2 to rewire a chassis for enhanced cathode-to-cell electron transfer.   
 
Approach 
The research initially took a genome-scale approach to the elucidation of electron transfer 
mechanisms in both microorganisms and as more information was obtained became more 
focused on the  

  
 
Concise Accomplishments 
Significant progress was made toward the long-term objective to develop a chassis microbe for 
high-rate microbial electrosynthesis.  

 
 

 
 
 

 
 

 

 
he studies with Clostridium ljungdahlii provided valuable information on 

its mechanisms for extracellular electron exchange, but suggested it may not be the ideal 
platform for the design of an electrosynthesis chassis.  
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Expanded Overview of Research Accomplished 
The research focused on two microorganisms, Geobacter sulfurreducens and Clostridium 
ljungdahlii.  These two organisms were chosen because they each had attractive features that 
suggested that they might be a good platform for microbial electrosynthesis.  However, the wild-
type strains of both microbes had major limitations that had to be overcome with synthetic 
biology approaches in order to develop a strain that would be an effective microbial 
electrosynthesis platform.  For example, G. sulfurreducens was better adapted to extracellular 
electron exchange. However, C. ljungdahlii possessed the Wood-Ljungdahl pathway using 
carbon dioxide as a terminal electron acceptor, reducing carbon dioxide to acetate, the preferred 
path for converting carbon dioxide to organic fuels and other commodities.   
 
Development of an Electrosynthesis Platform from Geobacter sulfurreducens  
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Improving pili conductivity  
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Previous studies on G. sulfurreducens current production demonstrated that high current 
densities are dependent upon long-range electron transport through biofilms mediated by 
electrically conductive pili (e-pili).  Therefore, the potential of increasing electron transport 
through biofilms by increasing the conductivity of e-pili was investigated to determine whether 
this might further improve electrosynthesis. 
 
The first design strategy investigated was the possibility that adding tryptophan to PilA, the pilus 
monomer, might enhance rates of electron transfer. The gene sequence of PilA was modified so 
that a tryptophan was substituted for the phenylalanine and the tyrosine at the carboxyl end of the 
PilA sequence. This modification yielded a strain, designated strain W51W57, which produced 
pili that were a 2000-fold more conductive than the wild-type pili.  Furthermore, the diameter of 
the W51W57 pili (1.5 nm) was half the diameter of the wild-type pili (Figure 5).  This level of 
conductivity improvement, as well as the ability to make the pili thinner, was completely 
unexpected. These studies demonstrate the possibility of modifying the properties of pili as a 
novel electronic material. 
 

 
Figure 6.  Properties of G. metallireducens pili. (a) Atomic force microscope image of individual 
pili on nano-electrode array.  (b) Height measurement with atomic force microscopy.  (c) 
Current-voltage response. 
 
The initial encouraging results with the W51W57 pili led us to question whether there might be 
pili already naturally produced in the microbial world that are more conductive than the G. 
sulfurreducens pili.  An analysis of type IV pilin monomer genes in available microbial genomes 
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demonstrated that the pilin monomer that gives rise to conductive pili in G. sulfurreducens has 
been recently evolved and is primarily found in Geobacter and closely related microorganisms.  
One pilin monomer of particular interest was the pilin of G. metallireducens, which contains 9 
aromatic amino acids, 3 more than the closely related G. sulfurreducens.  When the gene for the 
pilin of G. metallireducens was heterologously expressed in G. sulfurreducens the pili were 
5000-fold more conductive than the native G. sulfurreducens e-pili (Figure 6). Unlike the 
W51W57 pili, the G. metallireducens pili have a diameter (3 nm) comparable to that of the G. 
sulfurreducens wild-type pili.  
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Elucidating other components of the electron transfer pathway into the cell 
A major focus of the research was to determine what other components in G. sulfurreducens 
were important for electron transfer into the cell to donate electrons to respiratory complexes.  
As detailed in the annual reports, potential electron carriers were identified in multiple strategies 
for genome-scale transcriptomic analysis.  Furthermore, potential targets were identified through 
analysis of the G. sulfurreducens genome and the understanding of the pathways for electron 
transfer out of the cell. Many gene deletion studies were carried out, often with promising 
preliminary results.  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
   

 
Introduction of synthetic pathways for carbon dioxide reduction in G. sulfurreducens 
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Progress Toward Increasing the Ability of Clostridium ljungdahlii to Interact with Cathodes 
Unlike G. sulfurreducens, C. ljungdahlii possess an effective pathway for the reduction of carbon 
dioxide to multi-carbon organic compounds.  Its limitation is the inability to form thick cathode 
biofilms capable of consuming high current densities. 
 
Initial studies in which the uptake hydrogenase gene was deleted from C. ljungdahlii 
demonstrated that it was directly consuming electrons from the cathode. One hypothesis for 
electron transfer into gram-positive cells, such as C. ljungdahlii, initially proposed by Henry 
Ehrlich, is that the gram-positive cell walls are electrically conductive. In order to evaluate this 
hypothesis, cell wall preparations of C. ljungdahlii were generated (Figure 12) and the 
conductivity of the cell wall preparations was evaluated with the two-electrode system that we 
have previously employed to measure the conductivity of pili and biofilms.   
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IMPACT/APPLICATIONS/TRANSISTIONS 
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The results 

also provide additional basic information on the mechanisms for extracellular electron exchange 
in both G. sulfurreducens and C. ljungdahlii.  
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Additional publications on heterologous expression of conductive pili and further analysis of 
strain ACL are in preparation.  
 
PATENT APPLICATIONS FILED 
 
Microbial nanowires with increased conductivity and reduced diameters 
 
Microbial strain for electrosynthesis and electrofermentation 
 
Expected additional patent application:   
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